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ABSTRACT: In order to describe the transient stress
growth for polymer melts, the empirical model proposed by
Seo for the viscosity of steady-state flow is combined with a
phenomenological viscoelastic model of a differential type
(the White-Metzner model) along the lines proposed by
Souvaliotis and Beris. The relaxation time is taken as a
function of the invariant of the stress tensor (hence that of
the configuration tensor) rather than that of the rate of the
deformation tensor. Numerical results show a good correla-
tion with experimental data. The model predictions ap-

proach steady-state values at long times after the startup.
The nonlinear form of the model correlates very well with
the experimental data over many decades of the deforma-
tion rate, both in shearing and elongational deformations.
The proposed model is a simple one that can also describe
the overshoot in the transient stress growth. © 2003 Wiley
Periodicals, Inc. ] Appl Polym Sci 88: 510-515, 2003
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INTRODUCTION

As is well known, the description of viscoelastic ma-
terials essentially depends on the choice of a constitu-
tive model, and no single choice of constitutive equa-
tion will be best for all purposes."? The ultimate suc-
cess of a constitutive equation rests on its ability to
describe the experimental data over a wide range of
flows.

Motivated by Graessley’s entanglement network
theory, we proposed a few years ago a simple nonlin-
ear model that successfully described the steady-state
viscosity in shear flow for diverse polymer melts and
solutions®*:

log(m) = mytan™'[m, — log(A,y)] + m; (1a)
or
log(n) = mytan™'[m} — log(y)] + ms (1b)

where ¥ is the shear rate, m,, m, (or mj), and m, are
fitting parameters, and A, is a time constant like the
relaxation time of the polymer. After being combined
with Wagner’s relationship,” our model could predict
the first normal stress coefficient, and the prediction
correlated very well with the experimental data over
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many decades of the shear rate.* By adopting the
White-Metzner model (WM),® the proposed model
was also successfully applied to elongational flow be-
havior.> The expression for the extensional viscosity
can be written as”®

Ne = 2715(1113)/[1 - % )\(HD)HD]
\j

1
+ ms(llp)/ [1 tz )\(IID)HD] (2)
V/

where 1, is the viscosity that depends on the defor-
mation rate obtained from eq. (1) and II, is the second
invariant of the deformation tensor. To account for the
fact that high strain rates reduce the relaxation time,
we applied the following equation for the relaxation
time proposed by Ide and White®:

A(IIp) = A/ (1 + KlIp) (3)

where Aj and K are parameters with the dimensions of
time. The proposed model describes both the exten-
sional-flow and the shearing-flow behaviors in the
steady state very well.?

Though the model successfully described the
steady-state shear and elongational behaviors of poly-
mer melts and solutions, it could not depict the stress
growth function in shear and elongational deforma-
tions because the WM model’s expression for the tran-
sient viscosity monotonically approaches a steady-
state value.? Actually, all convected Jeffrey models,
including the WM model, follow this trend.? This is
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Figure 1 Comparison of the transient viscosity after
startup of shearing motion in a low-density polyethylene
(LDPE I) melt with the predictions of the White-Metzner
model. Shear rate ¥ = (filled triangle) 0.01 s, (open trian-
gle) 0.1 57, (filled circle) 1 s~ ', (open circle) 10 s~'. Data of
Laun.'>'*

ascribed to the loss of evolution caused by the direct
dependence of the model on the deformation rate.”™!

The shear viscosity for the startup of shear flow (n™)
is represented in the WM model as

n" (%) = n(P[1 — exp{ — t/[A(H]}] (4)

Figure 1 shows a correlation of the numerical results
of eq. (4) with the experimental data. The model can-
not describe the stress overshoot.” Souvaliotis and
Beris'? pointed out that a number of the problems
with the WM model are caused by the direct depen-
dence of its parameters on the deformation rate. Fol-
lowing White-Metzner’s original statement,® they
noted that the relaxation time should be a function of
the invariants of the stress matrix. This idea of a
phenomenological modification of the upper con-
vected Maxwell model being based on the invariants
of the configuration tensor (hence on those of the
stress tensor) rather than on those of the rate of strain
tensor arises naturally with the context of generalized
bracket formulation, which provides the thermody-
namic admissibility of any proposed viscoelastic con-
stitutive model.'*> Adopting a power-law dependence
of the relaxation time and the viscosity on the trace of
the configurational tensorial internal parameter, they
got reasonable predictions, including a finite zero-
shear-rate viscosity and nonsingular behavior in ex-
tension flow.'> A multiple-mode version was used in
fitting the experimental data. Depending on the values
of the parameters, reasonable agreement with steady-
state shear experimental data could be obtained, while
prediction of the transient viscosity at the startup of
shear flow was rather unsatisfactory.'”> Although the
modified model showed a slight overshoot, it under-
predicted the actual overshoot. Also, the theoretical
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predictions based on the values of the parameters
obtained from the steady-state shear normal stress
data failed to predict the steady-state values of the
viscosity.

In this study, we follow the Souvaliotis and Beris'?
idea that the relaxation time is a function of the in-
variants of the configuration tensor (hence those of the
stress matrix). However, we use the same functional
form for the viscosity function as what was used for
the steady-state viscosity function. By doing this, we
can use the original idea of White-Metzner with re-
spect to the relaxation time. This approach is similar to
the so-called time-strain separability, that is, the stress
tensor is factored into a time-dependent part and a
strain-dependent part." The dependence of relaxation
time on the invariants of the configuration tensor will
change the behavior of the results predicted by the
model.

MODEL DESCRIPTION

Equation (4) was derived from the convected Jeffrey’s
model. If the relaxation time is a function of the trace
of the stress tensor (hence that of the configurational
tensor), Jeffrey’s model cannot be directly integrated.
We must resort to the numerical analysis to get the
corresponding stress tensor. Then, optimization of the
variables by fitting the experimental data needs a re-
cursive iteration. First, the steady-state solution was
used to get the starting values. The steady-state vis-
cosity function of eq. (1) was used for the initial cal-
culation.

The WM constitutive model is usually presented in
the following form:

T+ M7Y)7q) = 2n(y)D (5)

where 7 is the extra stress tensor, 7, is its upper
convected derivative, D is the rate of the deformation
tensor, ¥ is the second invariant of the rate of the strain
tensor, and A(¥) is the relaxation time.'?

For the relaxation time, we used a simple functional
form similar to one proposed by Ide and White.® How-
ever, our relaxation time was a function of the first
invariant of the stress tensor, o, rather than a function
of the second invariant of the rate of the deformation
tensor, that is,

Ao

A4 KAo[tr(o)] (6)

where tr(o) is the trace of the stress tensor, o, which is

tr(o) = tr(7) + 3G, (7)
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and G, is the modulus of elasticity. The value of the
startup steady-shear flow was used as the initial value
of the extra stress tensor’:

tr(r) = 2mo(7) %Al — (1 + t/A)e™/] (8)

The numerical solution procedure was as follows.
First, the steady-state viscosity function was fitted
with the experimental data by using eq. (1). Then, the
invariant of the stress tensor was calculated using eq.
(8), and the relaxation time was obtained from the
calculated invariant and from eq. (6) with initial guess
of Ay and K values. Using the relaxation time as a
function of the invariant, the transient shear viscosity
for the startup of shear flow was fitted. From this
regressional fitting, a new relaxation time was ob-
tained and then used to calculate the invariant of the
stress tensor again. This procedure was repeated until
a reasonable convergence was obtained in the param-
eter values (A, and K). After that, the same procedure
was repeated for the whole data to get a series of
relaxation times.

The same strategy was used for the calculation of
the transient elongational viscosity, ng ', after startup
of elongational flow. In the WM model, the viscosity
of the steady shear free flow is*

2"’750(5‘) .
+_ A —(1-2x8)t/x
& .
(17]3(_)()\)8) - e—(1+/\s)t/)»] 9)

where € is the elongation rate. Then, tr(o) = tr(7)
+ 3G, where

2mp(8)€ .
) = % sy 1
2 EO )€ .
S LR R

The calculation procedure was the same as that
given above; first, the steady-state elongational viscos-
ity [ngo(€)] values were fitted using the same shear
viscosity functional form to calculate the trace of the
stress tensor for different elongation ratios.” Then, the
invariant of the stress tensor was calculated using eq.
(10), and a new relaxation time was obtained with the
calculated invariant data. Using the new relaxation
time as a function of the invariant, the transient elon-
gational viscosity for the startup of transient elonga-
tional flow was fitted. From this regressional fitting, a
new relaxation time was obtained and then was used
to calculate the invariant of the stress tensor again.
This procedure was repeated until a reasonable con-
vergence was obtained in the parameter values (g
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Figure 2 (a) Viscosity function 1 of the LDPE I melt. The
values were calculated by eq. (1b) (m, = 0.852, m', = 1.137,
my = 3.488). (b) Comparison of the first normal stress coef-
ficient, ¥, of the LDPE I melt with the predictions of eq.
(11). The value of n was 0.18 (from Seo®).

and K). After that, the same procedure was repeated
for the whole data to get a series of relaxation times.

RESULTS AND DISCUSSION

In order to see how the model works, we compared
the results of the calculation with the experimental
data reported in the literature for low-density poly-
ethylene (LDPE I). This polymer melt has been exten-
sively studied by Laun'*'* and Meissner.'>"” Infor-
mation on the relaxation spectrum of this melt at
150°C is given by Laun,''* but we attempted first to
fit the data with the single relaxation time model of eq.
(4). Even though a fitting based on the superposition
of discrete modes can be successful in homogeneous
flows, it is certainly impractical in numerical simula-
tions.

In our previous study,’ the experimentally mea-
sured zero-shear-rate viscosity and the first normal
stress coefficient were correlated with the model pre-
diction using eq. (1) (Fig. 2). Though eq. (1) represents
only a three-parameter model, the predictions of its
nonlinear form correlate well with the data for very
polydisperse LDPE I in spite of the very wide varia-
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Figure 3 Comparison of the transient viscosity after
startup of the shearing motion for an LDPE I melt with the
predictions of the present model. Shear rate ¥y = (filled
triangle) 0.01 s, (open triangle) 0.1 s 7, (filled circle) 15",
(open circle) 10 s~'. Data of Laun.’®'* The same viscosity
function as in Figure 2 was used.

tion of viscosity. For the prediction of the first normal
stress function, Wagner’s relationship® was used:

1dn
v, = T udy (11)

where ¥, is the first normal stress function and 7 is
the shear viscosity function obtained from eq. (1). This
relationship results from a K-BKZ-type single-integral
constitutive equation. The material parameter n
(damping constant) is associated with the strain de-
pendence of the memory function. The agreement be-
tween the experimental data and the model prediction
is quite good, as shown in Figure 2. Souvaliotis and
Beris'? had to use different parameter values to
achieve the best fits of ¥; and m, but we used the same
parameter values (m,, m,, and mjs) for both functions.

Figure 3 shows the transient viscosity n" after
startup of the shearing motion for the LDPE I melt.
Souvaliotis and Beris'* used an extended WM model
with multiple relaxation time mode, but the theoreti-
cal prediction underpredicted the actual overshoot.
Here we used four relaxation time modes, similar to a
discrete linear viscoelastic relaxation spectrum.'®'*
The present model matches the experimental data
quite satisfactorily. The optimized time—parameter
value (Ay) decreases rapidly with the shear rate,
whereas K shows the opposite trend (Table I). These
behaviors are similar to those of other predictions.'?
This result corroborates the idea of the original WM
model and the one extended by Souvaliotis and Beris'?
that a generalized bracket formulation where the re-
laxation time is defined as a function of an invariant of
the configuration tensor (hence that of the stress ten-
sor) leads to more satisfying agreement with real phe-
nomena. This is ascribed to the model that keeps its
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evolutionarity and satisfies the entropy production
inequality.'"'> Because of the inherent properties of
the inverse tangent function in eq. (1), the linear vis-
coelasticity for small deformations can be kept. Its
derivative for eq. (1) has the same form as the coro-
tated Maxwell model.' Though the current model
keeps the viscosity as a function of the second invari-
ant of the rate of the deformation tensor, changing the
relaxation time to a function of the first invariant of the
stress tensor produces the correct prediction. By the
same token, the second invariant of the stress tensor
can also be used for the relaxation time function, but
as verified by Takahashi et al.,'® the equation in which
the first invariant of the stress tensor is used gives
much better agreement with the experimental data
than the equation in which the second invariant is
included. In some cases, a numerical unstability oc-
curred during the iteration. We are not sure yet if that
happened because the invariant of the rate of the
deformation tensor was used for the viscosity function
rather than the invariant of the stress tensor. This
merits further study in the future.

The predictions of the current model are compared
in Figure 4 to the data obtained for the startup of
elongational motion. The values of ¢ from eq. (3)
were used for mgy(€) in eq. (8). Using the same four
relaxation time modes as that used for the shearing
motion did not give us satisfying results. We had to
use more discrete relaxation times. This is similar to
other observation. Souvaliotis and Beris'? as well as
Khan and Larson®' had to use different parameter
values fitting for transient shear viscosity and tran-
sient elongational viscosity. When more discrete relax-
ation times were used (Table II), good agreement over
a wide range of deformation rates and times was
observed. As the elongation rate decreases, the time
constant increases rapidly except when the elongation
rate is very small, in which case an almost steady state
is reached. According to eq. (8), a small relaxation time
constant and a small elongation rate have almost a
negligible effect on the variation of the transient elon-
gational viscosity with time, which is in agreement
with the experimental data. As we mentioned before,
the inverse tangent function in eq. (1) approaches the
linear viscoelasticity in low deformation rate. The pre-
dictions of the extended WM model deviate slightly
from the experimental results at small times, though

TABLE I
Fitting Parameter Values of Eq. (5) for Transient
Viscosity of Startup of Shearing Motion

¥y Ao K
10 0.0734 0.364
1 1.014 0.285
0.1 6.274 0.041
0.01 13.544 0.00033
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Figure 4 Comparison of the transient viscosity after
startup of elongational motion in an LDPE I melt with the
predictions of the modified White-Metzner model. Elonga-
tion rate &€ = (open circle) 1s™', (open square) 0.5s™ ", (open
triangle) 0.2 s, (open diamond) 0.1 s~ !, (filled circle) 0.05
s~ !, (filled square) 0.03 s~ !, (filled trian&le) 0.02 s71, (filled
diamond) 0.01 s~'. Data of Meissner.">™"” The solid lines are
the predictions of the present model using multiple relax-
ation time modes. The same viscosity function as in Figure 2
was used.

the deviation is not serious. This is ascribable to a
regression error or to the inherent nature of the mate-
rial (LDPE I). Similar behavior was also observed in
the theoretical results of Souvaliotis and Beris." In the
fitting of the startup of the shearing motion, the opti-
mized time—parameter value (A,) decreases rapidly
with the elongation rate, whereas K shows the oppo-
site trend.

Interestingly enough, the present model can show
the overshoot in the transient elongational viscosity,
which has been experimentally observed for the same
LDPE I melt*® and which has been theoretically ana-
lyzed using a single-integral constitutive equation
with a strain-dependent memory function.”! The the-
oretical results and the experimental results agreed
qualitatively. A comparison of the experimental re-
sults of Raible et al.” for the same LDPE I with the
predictions of the present model using the same ma-
terial parameter values above shows a fairly reason-
able correlation (Fig. 5). It fits the overshooting in
transient elongational viscosity pretty well, but under-

TABLE 1I
Fitting Parameter Values of Eq. (5) for Transient
Viscosity of Startup of Elongational Motion

(s Ao K

1 0.601 —0.0027
0.5 1.604 —0.0010
0.2 2.994 —0.0035
0.1 4.731 —0.012
0.05 9.036 —0.014
0.02 14.326 —0.02
0.01 27.675 —0.023
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Figure 5 Elongational viscosity as a function of time, t. The
solid lines are the predictions of the present model using
multiple relaxation time modes. Elongation rate ¢ = (open
circlez)OO.l s~ and (filled circle) 0.03 s~ *. Data are from Raible
et al.

predicts the transient elongational viscosities at short
times. As mentioned earlier, this might be ascribed to
regression errors coming from the difference of the
magnitudes of the data, but a more probable reason is
that it is due to the inherent properties of the polydis-
perse material. In order to fit the step function shear-
strain experimental data for melts of the same poly-
mer, Laun'>" had to use two functions for the damp-
ing function in shear. This is reasonable since the
material (LDPE I) is quite polydisperse (the polydis-
persity index is about 22)."> Hence, a multiple relax-
ation spectrum can fit the data more naturally, al-
though it is impractical for numerical calculations.

Like the case of the viscosity function for the startup
of steady-state shear flow, the good agreement with
the experimental data is ascribed to the dependence of
the relaxation time on the invariant of the stress tensor
rather than on that of the rate of deformation tensor.
Thus, the model can describe the transient behaviors
of polymer melts quantitatively as well as qualita-
tively. This is possible because the present model sat-
isfies the evolution condition, that is, the positive def-
initeness of the configuration tensor (hence that of the
stress tensor invariant).'%!?

CONCLUSIONS

Proposed simple equation for the steady-state viscos-
ities of shearing and elongational deformations is
combined with the White-Metzner model following
the approach of Souvaliotis and Beris,'* who applied
the generalized bracket formulation in which the re-
laxation time is defined as a function of the first in-
variant of the configuration tensor (hence that of the
stress tensor). This approach, which agrees with the
intent of White and Metzner in the initial derivation of
the model, provides a good correlation between the
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experimental data and the theoretical predictions. The
model predictions are examined in fitting transient
flows, both shearing and extensional. The model de-
scribes the transient behaviors of polymer melts very
well, quantitatively as well as qualitatively. Also, the
model predicts the overshoot in the transient shear
viscosity very well. Instead of a single relaxation time
model, multiple relaxation spectrum, which is physi-
cally reasonable though impractical in numerical sim-
ulation, could give us very good correlation with ex-
perimental data. For the transient elongational stress
growth, using the same relaxation spectrum fitting for
transient shear data did not give a good fitting for
transient elongational viscosity data. Addition of more
terms to the relaxation time function improves the
agreement remarkably, especially at short times. The
model shows a fairly good correlation around the
overshoot at long times, but also shows a slight devi-
ation at short times. This is ascribable to the regression
error and/or more probably to the polydisperse ma-
terial’s inherent properties. Because of the inherent
functional property, present model prediction ap-
proaches that of linear viscoelasticity at low deforma-
tion rates. The values of the parameters obtained are
physically reasonable, and their trends are in agree-
ment with those of the parameters obtained by Sou-
valiotis and Beris."?

This study corroborates the proposition of Souvali-
otis and Beris'* that a model whose constants are
functions of the invariants of the internal tensorial
structural parameter, a configuration tensor (hence
those of the stress tensor), leads to qualitatively and
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quantitatively reasonable predictions, including the
overshoots in the transient shear viscosity and the
transient elongational viscosity.

The author expresses his gratitude to Dr. Eunwon Han for
helpful discussion. Special thanks go to Youngwook Seo and
Youngin Seo for their help in article preparation.
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